14 September 2016


The principle of defence in depth is to have layered security mechanisms. Having multiple security mechanisms in place means if there is an attack on your system, hopefully only one mechanism has been breached, and there are others to continue protecting your system (owasp 2015). When adding extra defence mechanisms additional risks should be evaluated. For example, changing password requirements to force lengthy complicated passwords may result in users physically writing passwords down on pieces of paper, this may create a greater risk than requiring a shorter, less complicated password (owasp 2015). A two-step authentication process would be better in this scenario, banks use two step authentication processes when a user is withdrawing money from an ATM, the first is something you possess – the ATM card, and secondly, something you know – your pin number. Two-step verification is increasingly seen in email and social networking sites and other websites requiring improved security. The two-step authentication for websites is usually a username and password, coupled with a code that is sent to the users phone. The advantage to this two-step method is even if the password is guessed or stolen, without the code sent to the account holder’s mobile phone, the attacker will be unable to login (Barnatt 2014). Applications where users login via username and password must have several additional security mechanisms in place. These include session management, authentication using tokens, and having restricted access measures in place. It is important to restrict the application to the lowest possible level of privileges when accessing the database. When the majority of the access to the database is read only, if an attacker is able to hijack a users account, they will be unable to write or delete important information from the database (Stuttard & Pinto 2011 p.342). Token authentication is another useful tool. Tokens are cryptographically signed by the server, which guarantees they have not been forged or altered (Barbettini 2016).

OWASP regularly compiles a list of the top 10 of the most critical web application security flaws. Thoroughly understanding these top 10 threats and implementing layered protections to defend against them is crucial in any application. 

OWASP Top 10 Application Security Risks – 2013 Report

1. Injection
Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter into executing unintended commands or accessing data without proper authorization.

2.Broken Authentication and Session Management
Application functions related to authentication and session management are often not implemented correctly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit other implementation flaws to assume other users’ identities.

3. Cross-Site Scripting (XSS)
XSS flaws occur whenever an application takes untrusted data and sends it to a web browser without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

4. Insecure Direct Object References
A direct object reference occurs when a developer exposes a reference to an internal implementation object, such as a file, directory, or database key. Without an access control check or other protection, attackers can manipulate these references to access unauthorized data.

5. Security Misconfiguration

Good security requires having a secure configuration defined and deployed for the application, frameworks, application server, web server, database server, and platform. Secure settings should be defined, implemented, and maintained, as defaults are often insecure. Additionally, software should be kept up to date.

6. Sensitive Data Exposure
Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and authentication credentials. Attackers may steal or modify such weakly protected data to conduct credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as encryption at rest or in transit, as well as special precautions when exchanged with the browser.

7. Missing Function Level Access Control
Most web applications verify function level access rights before making that functionality visible in the UI. However, applications need to perform the same access control checks on the server when each function is accessed. If requests are not verified, attackers will be able to forge requests in order to access functionality without proper authorization.

8. Cross-Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the victim’s session cookie and any other automatically included authentication information, to a vulnerable web application. This allows the attacker to force the victim’s browser to generate requests the vulnerable application thinks are legitimate requests from the victim.

9. Using Components with Known Vulnerabilities

Components, such as libraries, frameworks, and other software modules, almost always run with full privileges. If a vulnerable component is exploited, such an attack can facilitate serious data loss or server takeover. Applications using components with known vulnerabilities may undermine application defenses and enable a range of possible attacks and impacts.

10. Unvalidated Redirects and Forwards
Web applications frequently redirect and forward users to other pages and websites, and use untrusted data to determine the destination pages. Without proper validation, attackers can redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

Barbettini N, 5 August 2016, Stormpath, online video, accessed 11 September 2016.


Barnatt C, 7 July 2014, Explaining Computers, online video, accessed 14 September 2016.

OWASP, 2013, The ten most critical web application security risks. PDF download link

OWASP, 14 August 2015, Defense in depth, accessed 13 September 2016.

Stuttard D & Pinto M, 2011, The Web Application Hacker’s Handbook, Wiley Publishing, Inc. Indianapolis, Indiana USA.

12 September 2016

Domain Driven Design

“As software developers, we fail in two ways: we build the thing wrong, or we build the wrong thing.”  – Steven Smith, 2014.

Domain Driven Design is an approach to build better software applications. Nillsson and Green (2014) describe it as a collaboration between domain experts and software developers. This is contrary to data driven design, which has no contact between designers and developers. Traditionally, senior developers would write the framework, then hand off the domain to be written by the less experienced developers (Friberg 2015). Domain Driven Design turns this concept on its head by making the domain the crucial component. The Domain Driven Design approach begins with opening communication between software developers and domain experts, this gives the developers a chance to fully explore what the client understands their needs are and enables the developers to begin thinking about code that would perfectly meets those needs. It is important to understand the context to be able to add it to the code, if it is important to the client, it should be in the code (Green & Nillsson 2014). At this stage the developers can begin to paint the overall picture of the subsystem. User stories are created with specific examples to present to the domain expert. It is important that software developers step outside of coding language and use ubiquitous language with conversations between the software developers and domain experts (Friberg 2015, Green & Nillsson 2014). This ubiquitous language is then used in all aspects including the code, design documents and conversations, thus preventing confusion and ensuring both teams have a clear understanding of the design and processes (Smith 2014). Once user stories are agreed upon, it is time to sketch them out. These sketches can be scenarios, storyboards, simple coded prototypes or UML. It is important to utilise the strong communication foundation and ensure the storyboard scenarios meet the client’s needs. Only then can writing the code begin. The initial stage of coding is used to test the system by using the scenarios as test cases (Green & Nillsson 2014). These scenarios are tested one by one adapting and adding classes and components as needed. It is an iterative process allowing the developers to improve and better understand the client’s requirements. The Domain Driven Design approach results in greater flexibility, better understanding of the problem by the customer, and better communication of the clients needs by the developer.

Friberg R, 21 September 2015, DotNetFringe Conf, online video, accessed 12 September 2016.

Green R & Nillsson J, 18 September 2014, TechEd, online video, accessed 12 September 2016.

Smith S, 28 September 2014, Domain-Driven Design with ASP.NET MVC, accessed 12 September 2016.